期刊文献+

基于seq2seq模型的室内WLAN定位方法 被引量:3

Seq2seq model based WLAN indoor positioning
在线阅读 下载PDF
导出
摘要 基于WLAN(wireless local area network)的定位在智能家居、室内导航、个性化服务等应用中扮演着重要的角色。研究了基于序列到序列seq2seq模型的室内WLAN定位方法。该方法基于在自然语言处理中广泛应用的seq2seq神经网络模型,通过样本数据学习信号指纹空间中的时间序列和坐标空间中的时间序列的关系。经过滤波等预处理后,再进行样本增强,并设计合理的输入输出及代价函数,本方法能够实现更高精度定位。实测的数据表明,提出的方法相比于其他几种基于神经网络的定位方法,度量学习RFSM方法、去噪自编码器DAE方法、f-RNN方法,平均定位精度分别提高了23%、11%和20%。 Wireless local area network(WLAN)based positioning plays an important role in smart homes,indoor navigation and user-defined services.Proposed a seq2 seq model based WLAN indoor positioning method.The method is based on the seq2 seq neural network model,which is widely adopted in the natural language processing(NLP).The seq2 seq model can learn the relationships of the time sequences in the signal domain and the coordinate domain.After carefully designed signal pre-processing,sample augmentation and reasonable loss function,the learned model can be adopted for positioning.According to the experimental results from our collected data,our method can improve positioning accuracy compared with some other neural network based methods,including the RFSM method,the denoising autoencoder(DAE)based method and the f-RNN method,by 23%,11%and 20%respectively.
作者 邢方方 惠向晖 Xing Fangfang;Hui Xianghui(Xuchang Electrical Vocational College,Xuchang 461000,China;Henan Agricultural University,Zhengzhou 450002,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2020年第11期93-100,共8页 Journal of Electronic Measurement and Instrumentation
关键词 序列到序列模型 WLAN定位 神经网络 seq2seq based model WLAN based indoor positioning neural network
作者简介 邢方方,2005年毕业于中央广播电视大学,现为许昌电气职业学院讲师,主要研究方向为计算机通信、网络应用研究。E-mail:ffwwork@sina.com;惠向晖,2003年于郑州大学获得学士学位,2011年于解放军信息工程大学获得硕士学位,现为河南农业大学教师,主要研究方向为云计算,智能机器人技术。E-mail:truhui@sina.com
  • 相关文献

参考文献4

二级参考文献67

  • 1Langendoen K, Reijers N. Distributed localization in wireless sensor networks: a quantitative comparison [J]. Computer Networks,2003,43(4) :499-518.
  • 2Bahl P, Padmanabhan V N. RADAR: An Inbuilding RF-based User Location and Tracking System [C]//Proceeding of IEEE INFOCOM 2000. 2000:775- 784.
  • 3Bahl P, Padmanabhan V N, Balachandran A. Enhancements to the RADAR User Location and Tracking System [R]. Microsoft Corporation. 2000.
  • 4Want R, Hopper A, Falcao V, et al. The active badge location system [J]. ACM Transactions on Information Systems, 1992, 10(1):91-102.
  • 5AT&T Laboratories Cambridge. The BAT Ultrasonic Location System[EB/OL]. http://www. cl. cam. ac. uk/research/dtg/ attarehive/bat/, 2009-7.
  • 6Priyantha N B,Chakraborty A, Balakrishnan H. The cricket location-support system[C]//Proceedings of the 6th Annual International Conference on Mobile Computing and Networking. 2000 : 32-43.
  • 7Ni L M,Liu Y H,Lau Y C,et al. LANDMARC:indoor location sensing using active RFID[J]. Wireless Networks, 2004,10(6):. 701- 710.
  • 8Randell C, Muller H. Low cost indoor positioning system [J]. Lecture Notes in Computer Science Ubicomp 2001: Ubiquitous Computing, 2001,2201 : 42-48.
  • 9Jin G Y,Lu X Y,Park M S. An Indoor Localization Mechanism Using Active RFID Tag[C]//Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing. 2006:4-8.
  • 10Hightower J,Want R, Borriello G. SpotON: An Indoor 3D Location Sensing Technology Based on RF Signal Strength [R]. Department of Computer Science and Engineering, University of Washington, 2000.

共引文献93

同被引文献48

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部