摘要
                
                    为了提升鱼肉新鲜度检测的准确率,该研究采用了电子鼻、机器视觉和多数据融合技术快速地检测冷藏鱼肉的新鲜度。挥发性盐基氮含量与新鲜度密切相关且易于测量,因此被选定作为鱼肉新鲜度的指标;用机器视觉和电子鼻获取样品的图像和气味信息。应用反向传播神经网络、卷积神经网络(convolutional neural network,CNN)和卷积神经网络-门控循环单元-注意力(CNN-GRU-Attention)3种模型对鱼肉新鲜度进行3分类和7分类预测。结果表明,3分类和7分类实验中,3种模型利用电子鼻数据进行分类的效果均优于机器视觉方法。此外,对原始数据进行融合后,3个模型的分类准确率均有提升。特别是基于CNN-GRU-Attention模型的多感官数据融合方法在本次研究中效果最优,其在测试集上的准确率分别达97.61%和90.48%。研究结果表明,采用多感知检测技术结合CNN-GRU-Attention预测模型能够有效地提高鱼肉新鲜度检测的准确性。
                
                To improve the accuracy of fish freshness detection,electronic nose,machine vision,and multi-data fusion techniques were used to rapidly detect the freshness of refrigerated fish.Total volatile base nitrogen(TVB-N),which is closely related to freshness and is easy to measure,was selected as an indicator of fish freshness.Machine vision and electronic nose-acquired images as well as odor information were collected from samples.Three models,namely,the backpropagation neural network(BPNN),convolutional neural network(CNN),and convolutional neural network-gated recurrent unit-attention(CNN-GRU-Attention),were applied to fish freshness for 3-classification and 7-classification prediction.Results showed that the classification effect of the three models using the electronic nose data was better than that of the machine vision method,regardless of whether the application was 3-classification or 7-classification.In addition,the classification accuracy of the three models improved after the fusion of the original data.In particular,the multisensory data fusion method based on the CNN-GRU-Attention model performed the best in this study,with its accuracies on the test set reaching 97.61%and 90.48%,respectively.The results showed that multi-perception detection technology combined with the CNN-GRU-Attention prediction model could effectively improve the accuracy of fish freshness detection.
    
    
                作者
                    袁也
                    周博
                    吴泽玮
                YUAN Ye;ZHOU Bo;WU Zewei(Department of Mechanical Engineering,Yancheng Institute of Technology,Yancheng 224002,China)
     
    
    
                出处
                
                    《食品与发酵工业》
                        
                                CAS
                                CSCD
                                北大核心
                        
                    
                        2024年第24期313-320,共8页
                    
                
                    Food and Fermentation Industries
     
            
                基金
                    国家自然科学基金项目(22171239,31671583)。
            
    
                关键词
                    鱼肉新鲜度
                    电子鼻
                    机器视觉
                    数据融合
                    神经网络
                
                        fish freshness
                        electronic nose
                        machine vision
                        data fusion
                        neural network
                
     
    
    
                作者简介
第一作者:袁也,硕士研究生;通信作者:周博,副教授,E-mail:zjzhobo@126.com。