期刊文献+

参数未知的复混沌系统错位复修正函数投影同步

Misalignment complex correction function projection synchronization of complex chaotic systems with unknown parameters
在线阅读 下载PDF
导出
摘要 为解决参数未知的复混沌系统在复杂状态变量无法分离情况下的同步控制问题,提出了错位复修正函数投影同步(misalignment complex correction function projection synchronization,MCCFPS)控制方案。首先,设计一种自适应跟踪控制器,使其能够适应任意有界复混沌系统之间的差异。该控制器通过动态控制强度和收敛因子增强自适应能力并调节收敛速度,通过Lyapunov理论证明该控制器的收敛性,从而为控制方案的可靠性提供理论支持。然后,对两个异构的复混沌系统进行动力学模型分析,计算并比较混沌系统和复混沌系统时间序列的模糊熵,验证复混沌系统的复杂度更高,从而突显其同步控制在保密通信应用中的优越性,并进一步设计其MCCFPS同步方案。最后,通过数值仿真验证MCCFPS方案的有效性。结果表明:该方案能够成功实现复混沌系统的同步控制,并具有良好的同步效果和控制性能。总体来说,相较于传统的混沌系统,研究引入复变量,并采用更复杂的MCCFPS同步控制方案,直接在复域中实现混沌同步,有效提高了系统的安全性。研究结果为复系统同步控制问题提供了新的思路和途径,具有重要的应用价值。 To address the problem of synchronizing chaotic systems with unknown parameters and complex state variables that cannot be separated,a misalignment complex correction function projection synchronization(MCCFPS)control scheme is proposed.First,an adaptive tracking controller is designed to accommodate the differences between any bounded complex chaotic systems.This controller enhances adaptive capability and adjusts convergence speed through dynamic control strength and convergence factors,and proves the convergence of the controller through Lyapunov theory,providing theoretical support for the reliability of the control scheme.Subsequently,the dynamic models of two heterogeneous complex chaotic systems are analyzed.Fuzzy entropy of the time series of chaotic and complex chaotic systems is calculated and compared to validate that complex chaotic systems have higher complexity.This highlights the superiority of their synchronization control in secure communication applications.The MCCFPS synchronization scheme is further designed.Finally,the effectiveness of the MCCFPS scheme is verified through numerical simulations.The results demonstrate that the scheme successfully achieves synchronization control of complex chaotic systems,exhibiting good synchronization effects and control performance.Overall,compared to traditional chaotic systems,this study introduces complex variables and adopts a more sophisticated synchronization control scheme,MCCFPS,to directly achieve chaotic synchronization in the complex domain,effectively enhancing system security.This research provides new ideas and approaches to the synchronization control problem of complex systems,holding significant practical value.
作者 杨玉佩 王聪 张宏立 马萍 张绍华 YANG Yupei;WANG Cong;ZHANG Hongli;MA Ping;ZHANG Shaohua(College of Electrical Engineering,Xinjiang University,Urumqi 830017,China;College of Intelligent Science and Technology,Xinjiang University,Urumqi 830017,China)
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第9期65-75,共11页 Journal of Harbin Institute of Technology
基金 自治区自然科学基金(2022D01C367) 天山英才培养计划(2023TSYCCX0037,2023TSYCQNTJ0020)。
关键词 复混沌系统 复变量 MCCFPS 参数辨识 模糊熵 complex chaotic systems complex variables MCCFPS parameter identification fuzzy entropy
作者简介 杨玉佩(1998-),女,硕士研究生;通信作者:王聪(1989-),女,副教授,博士生导师,wangc@xju.edu.cn。
  • 相关文献

参考文献10

二级参考文献75

  • 1李伟文,章献民,陈抗生,邹英寅.模拟退火算法在无端偏振控制器中的应用[J].光子学报,2005,34(6):820-824. 被引量:9
  • 2李伟文,金晓峰,章献民,陈抗生.遗传算法在偏振态控制中的应用[J].浙江大学学报(工学版),2006,40(3):443-447. 被引量:8
  • 3蒋定举.非线性电路分析的逆算符方法[J].现代机械,1996(3):40-43. 被引量:1
  • 4BAGLEY R L,TORVIK P.A theoretical basis for the application of fractional calculus to viscoelasticity[J]. Journal of Rheology,1983,27(3):201-210.
  • 5BANERIEE T,BIAWAS D,SARKAR B C.Complete and generalized synchronization of chaos and hyperchaos in a coupled first-order time-delayed system[J]. Nonlinear Dynamics,2013,71(1-2):279-290.
  • 6MAHMOUD E E.Modified projective phase synchronization of chaotic complex nonlinear systems[J]. Mathematics and Computers in Simulation,2013,89(4):69-85.
  • 7ACHARYYA S,AMRITKAR R E.Generalized synchronization of coupled chaotic systems[J]. The European Physical Journal Special Topics,2013,222(3-4):939-952.
  • 8PAL S,SAHOO B,PORIA S.Generalized lag synchronization of delay coupled chaotic systems via linear transformations[J]. Physica Scripta,2013,87(4):45011-45018.
  • 9MAHMOUD E E.Lag synchronization of hyperchaotic complex nonlinear systems via passive control[J]. Applied Mathematics & Information Sciences,2013,7(4):1429-1436.
  • 10MAHMOUD G M,MAHMOUD E E.Complex modified projective synchronization of two chaotic complex nonlinear systems[J]. Nonlinear Dynamics,2013,73(4):2231-2240.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部