期刊文献+

深水耐压壳仿生设计与分析 被引量:21

Bionic design and analysis of deepwater pressure hull
在线阅读 下载PDF
导出
摘要 文章研究了千米水深蛋壳仿生耐压壳的设计理论与分析方法,首先采用Upadhyaya方程、N-R方程,分别建立了鸡蛋壳、鹅蛋壳形状函数;其次,设计了6 km水深鸡蛋壳、鹅蛋壳仿生耐压壳,并基于解析法和数值法,对这两种结构进行强度和稳定性研究;最后,建立了球形、抛物线形、柱形、椭球形等4种典型耐压壳的数值模型,与仿生耐压壳作对比分析。结果表明:解析法和数值法所得的经向应力、纬向应力、临界屈曲应力吻合良好,鹅蛋壳仿生耐压壳的强度和稳定性优于鸡蛋壳仿生耐压壳,具有较好的耐压特性;球形耐压壳储备浮力能力最优,鹅蛋形、鸡蛋形、柱形、椭球形、抛物线形耐压壳的储备浮力能力分别是球的87%、82%、68%、67%、66%;从储备浮力、壳内空间利用率、流线型、乘员舒适性等方面综合比较可知,鹅蛋壳仿生耐压壳可为深水耐压壳设计提供有效参考。 The design theory and analysis method of kilometer water-depth bionic pressure hull for eggshell were presented. Shape function for chicken eggshell and goose eggshells was proposed, using Upadhyaya e-quation and N-R equation, respectively. Secondly, bionic pressure hulls of the chicken eggshell and goose eggshell with the water depth of 6 km were designed, and strength and stability of the two hulls were inves-tigated based on analytical method and numerical method. Finally, numerical models of four classical pres-sure hulls, including spherical hull, parabolic hull, cylindrical hull and ellipsoidal hull, were employed for comparison with the two bionic pressure hulls. The results showed that, meridional stress, zonal stresses and critical buckling stresses from the numerical method agreed well with the analytical method. The goose pressure hull has perfect pressure resistance, whose strength and stability were better than the chicken pres-sure hull. Spherical pressure hull has the most buoyancy reserve capacity. Buoyancy reserve capacity for goose pressure hull, chicken pressure hull, cylindrical pressure hull, ellipsoidal pressure hull, parabolic pressure hull was respectively 87%, 82%, 68%, 67%, 66% of the spherical pressure hull. Goose pressure hull could provide effective guide for the design of deepwater pressure hull, considering buoyancy reserve, interior layout and hydrodynamics.
出处 《船舶力学》 EI CSCD 北大核心 2015年第11期1360-1367,共8页 Journal of Ship Mechanics
基金 国家自然科学基金项目(51205173) 江苏省基础研究计划(自然科学基金)-青年基金项目(BK20150469)
关键词 深水耐压壳 鸡蛋壳 鹅蛋壳 仿生设计 deepwater pressure hull chicken eggshell goose eggshell bionic design
作者简介 张建(1984-),男,博士后,E—mail:zhjian127@163.com; 王纬波(1969-),男,研究员。
  • 相关文献

参考文献17

  • 1Reynolds T, Lomacky O, Krenzke M. Design and analysis of small submersible pressure hulls[J]. Computers and Struc- tures, 1973, 3(5): 1125-1143.
  • 2马岭,崔维成.Path Following Control of A Deep-Sea Manned Submersible Based upon NTSM[J].China Ocean Engineering,2005,19(4):625-636. 被引量:7
  • 3Liang C C, Shiah S W, Jen C Y, Chen H W. Optimum design of multiple intersecting spheres deep-submerged pressure hull[J]. Ocean Engineering, 2004, 31(2): 177-199.
  • 4Ness C C, Simpson WM. A new submarine paradigm[J]. Naval Engineers Journal, 2000, 112(4): 143-152.
  • 5Blachut J, Smith P. Buckling of muhisegment underwater pressure hull[J]. Ocean Engineering, 2008, 35(2): 247-260.
  • 6Blaehut J, Jaiswal O R. On buckling of toroidal shells under external pressure[J]. Comput Strnct, 2000, 77(3): 233-251.
  • 7Babich D V. Stability of shells of revolution with muhifocal with multifocal surfaces[J]. International Applied Mechanics, 1993, 29(11): 68-72.
  • 8Wong H T. Behaviour and modelling of steel-concrete composite shell roofs[D]. The Hong Kong: The Hong Kong Poly- technic University, 2005.
  • 9Pawel Woelke. Computational model for elasto-plastic and damage analysis of plates and shells[D]. Baton Rouge: Louisiana State University, 2005.
  • 10Upadhyaya S K, Cooke J R, Gates R S, et al. A finite element analysis of the mechanical and thermal strength of avian eggs[J]. Journal of Agricultural Engineering Research, 1986, 33(1): 57-78.

二级参考文献22

  • 1宋慧芝,王俊,叶均安.鸡蛋蛋壳受载特性的有限元研究[J].浙江大学学报(农业与生命科学版),2006,32(3):350-354. 被引量:37
  • 2胡筱波,陈红,任奕林.鸡蛋静态力学特性的研究[J].中国家禽,2007,29(10):19-21. 被引量:4
  • 3[1]Aicardi,M.,Casalino,G.,Indiveri,G.,Aguiar,A.,Encarnacāo,P.and Pascoal,A.,2001.A planar path following controller for underactuated marine vehicles,9th IEEE Mediterranean Conference on Control and Automation,IEEE MED01,Dubrovnik,Croatia,June,27~29.
  • 4[2]Cristi,R.,Papoulias,F.A.and Healey,A.,1990.Adaptive sliding mode control of autonomous underwater vehicles in the dive plane,IEEE Journal of Oceanic Engineering,15(3):152~160.
  • 5[3]Do,K.D.and Pan,J.,2004.State-and output-feedback robust path-following controllers for underactuated ships using Serret-Frenet frame,Ocean Engineering,31,587~613.
  • 6[4]Do,K.D.,Jiang,Z.P.and Pan,J.,2004.Robust adaptive path following of underactuated ships,Automatica,40(6):929~944.
  • 7[5]Encarnacao,P.and Pascoal,A.,2000.3D Path following for autonomous underwater vehicle,Proceedings of 39th IEEE Conference on Decision and Control CDC' 2000,Sydney,Australia,2977~2982.
  • 8[6]Feng,Y.,Yu,X.and Man,Z.,2002.Non-singular terminal sliding mode control of rigid manipulators.Automatica,38(12):2159~2167.
  • 9[7]Gao,W.B.and Hung,J.C.,1993.Variable structure control of nonlinear systems:a new approach,IEEE Transactions on industrial electronics,40,45~55.
  • 10[8]Healey,A.and Lienard,D.,1993.Multivariable sliding-mode control for autonomous diving and steering of unmanned underwater vehicles.IEEE Journal of Oceanic Engineering,18(3):327~339.

共引文献13

同被引文献186

引证文献21

二级引证文献191

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部