期刊文献+

抓捕航天器的多环递归姿态跟踪控制 被引量:5

Multi-Loop Attitude Tracking Control for Capturing Spacecraft
在线阅读 下载PDF
导出
摘要 为提升存在控制饱和约束抓捕航天器的姿态跟踪精度,先引入姿态跟踪误差的积分项,将广义二阶姿态控制系统扩展成广义三阶姿态跟踪动力学系统,并给出扩展系统控制目标的设计方法;接着对扩展系统提出多环递归跟踪控制策略,设计了一种辅助动力学系统在线消除控制饱和约束,给出保证闭环系统渐近稳定的自适应多环姿态跟踪控制器。数值仿真显示,该方法能有效提升姿态跟踪精度,且姿态跟踪轨迹具有优良的动态品质。 Aiming at improving the attitude tracking precision, the structure of the attitude control system is extended, and a variable structure robust attitude tracking control strategy is established for extending system, in which, the constraints of control saturation and unknown inertia moment are considered. Firstly, an integral of attitude tracking error is introduced to the attitude control system to drop the steady - state error, an extending attitude tracking system is obtained, and the design method of exteuding system's control goal is analyzed. Then, multi-loop recursive tracking control strategy is proposed for extending system, an auxil- iary system is designed to online eliminate the control saturation, and an adaptive multi -loop attitude tracking controller is developed for spacecraft. The numerical simulations show that the proposed method can effectively improve attitude tracking precision and the attitude tracking trajectory presents good dynamic quality.
作者 殷春武
出处 《航天控制》 CSCD 北大核心 2018年第1期42-49,共8页 Aerospace Control
基金 西安建筑科技大学青年基金项目(QN1727) 西安建筑科技大学人才基金项目(6040317017)
关键词 航天器 姿态控制 变结构控制 多环递归跟踪控制 Spacecraft Attitude control Varying structure control Multi-loop tracking control
作者简介 殷春武(1982-),男,湖北广水人,博士,副教授,主要研究方向为姿态控制和非线性控制方法。
  • 相关文献

参考文献1

二级参考文献18

  • 1Davila J. Attitude Control of Spacecraft using Robust Backstepping Controller Based on High Order Sliding [ C]//AIAA Guid- ance, Navigation, and Control (GNC) Conference, Boston, MA, 2013, : 19-22.
  • 2Yeh F K. Sliding-Mode Adaptive Attitude Controller Design for Spacecrafts with Thrusters[ J]. lET Control Theory and Applica- tions, 2010, 4(7): 1254-1264.
  • 3Zhao L, Jia Y M. Finit-Time Attitude Tracking Control for a Rigid Spacecraft Using Time-Varying Terminal Sliding Mode Tech- niques[J]. International Journal of Control, 2015, 88(6) : 1150-1162.
  • 4Lu K, Xia Y. Adaptive Attitude Tracking Control for Rigid Spacecraft with Finite-Time Convergence[ J]. Automatica, 2013, 49 (12) : 3591-3599.
  • 5Thakur D, Srikant S, Akella M R. Adaptive Attitude-Tracking Control of Spacecraft with Uncertain Time-Varying Inertia Param- eters[J]. Journal of Guidance, Control, and Dynamics, 2014(11) : 1-12.
  • 6Zhong C, Guo Y, Wang L. Fuzzy Active Disturbance Rejection Attitude Control of Spacecraft with Unknown Disturbance and Parametric Uncertainty[ J]. International Journal of Control and Automation, 2015, 8(8) : 233-242.
  • 7Zou A M, Kumar K D, Zeng G H. Quaternion-Based Adaptive Output Feedback Attitude Control of Spacecraft Using Chebysbev Neural Networks[J]. IEEE Trans on Neural Networks, 2010, 21(9) : 1457-1471.
  • 8Forbes J R. Attitude Control with Active Actuator Saturation Prevention[J]. Acta Astranautica, 2015,107:187-195.
  • 9Yuan R. Robust Adaptive Neural Network Control for a Class of Uncertain Nonlinear Systems with Actuator Amplitude and Rate Saturations [ J ]. Neuro Computing, 2014 ( 125 ) : 72- 80.
  • 10Hu Q. Robust Adaptive Backstepping Attitude and Vibration Control with L-2 Gain Performance for Flexible Spacecraft under An- gular Velocity Constraint[ J]. Journal of Sound and Vibration, 2009, 327 (3) : 285-298.

共引文献5

同被引文献34

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部