期刊文献+

基于Camshift和Kalman滤波的仿人机器人手势跟踪 被引量:22

The Hand Tracking for Humanoid Robot Using Camshift Algorithm and Kalman Filter
在线阅读 下载PDF
导出
摘要 对仿人机器人MIR-1的双目视觉系统实现实时手势跟踪.通过颜色直方图反投影,将每帧RGB输入图像转换为二维的肤色概率分布图像,基于Camshift算法计算手势跟踪窗口的位置和大小,并用Kalman滤波预测手心位置,有效地解决了背景中大面积肤色干扰和手势部分被遮挡等问题.在仿人机器人MIR-1上完成的手势跟踪实验,验证了此方法的实用性和有效性. Based on Camshift (Continuously Adaptive Mean Shift) algorithm and the constant-velocity Kalman filter algorithm, a real-time hand tracking system for the stereo vision system of humanoid robot MIR- 1 was presented. For each video frame, the raw image is converted to a 2-D skin color probability distribution image via the skin color histogram back-projection. Camshift algorithm is then applied to find the mode (peak) of the probability distribution, which estimates the center and size of tracking window. To deal with the hand occlusion by other objects and choose the correct skin region when multiple image regions are skin colored, a two-dimensional Kalman filter (stochastic estimator) is used to track the hand region centroid. The experimental results show that this algorithm is robust and efficient.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2006年第7期1161-1165,共5页 Journal of Shanghai Jiaotong University
关键词 手势跟踪 CAMSHIFT KALMAN滤波 颜色概率分布 hand tracking Camshift Kalman filter color probability distribution
作者简介 彭娟春(1980-),女,湖南岳阳人,硕士生,主要研究方向为人机交互、模式识别等. 苏剑波(联系人),男,教授,博士生导师,电话(Tel.):021-34204276;E-mail;jbsu@sjtu.edu.cn.
  • 相关文献

参考文献5

  • 1Bray M,Koller-Meier E,Van Gool L.Smart particle filtering for 3D hand tracking[C]//Proceedings of 6th IEEE International Conference on Automatic Face and Gesture Recognition.Seoul,Korea:IEEE,2004:675-680.
  • 2Nummiaro K,Koller-Meier E,Van Gool L.An adaptive color-based particle filter[J].Image and Vision Computing,2003,21(1):99-110.
  • 3Comaniciu D,Ramesh V,Meer P.Real-time tracking of non-rigid objects using mean shift[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Hilton Head Island,South Carolina:IEEE,2000.2:142-149.
  • 4Comaniciu D,Ramesh V.Mean shift and optimal prediction for efficient object tracking[C]//Proceedings of the 2000 IEEE International Conference on Image Processing.Vancouver,Canada:IEEE,2000.3:70-73.
  • 5Bradski Gary R.Computer vision face tracking as a component of a perceptual user interface[C]//Proceedings of IEEE Workshop Applications of Computer Vision.Princeton,NJ:IEEE,1998:214-219.

同被引文献195

引证文献22

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部